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Problems of the structure of asymptotically attainable elements (AAE) generated by the action of"control functions" that satisfy 
generally non-convex constraints of a functional character to a high degree of accuracy are considered. No resource type conditions 
are assumed, which leads to an "unbounded" formulation of the problem concerned with the asymptotic behaviour of attainability 
domains and their abstract analogues. Necessary and sufficient conditions for an exhaustive realization of the AAE in the class 
of integrally bounded approximate solutions are established in terms of the generalized problem in the class of finitely additive 
vector-valued measures. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We shall study the attainability domain of the linear controlled system 

k(t)= A(t)x(t)+ B(t)f(t),  X(to)= X o, t 0 ~ < t ~ 0 0  (1.1) 

Let the phase spao~ of (1.1) have dimension n. As in [1-3], we consider the attainability domain 
for the first k coordinates at the time 00 (k ~< n) to be the set of all finite states generated by the set 
of vector-valued control programs f = (]1, • • • , f~), where r is a positive integer, such that the 
condition 

O0 
I S(t) f( t)dt  a Y (1.2) 
to 

is satisfied. Here A(.) is a component-wise continuous (n x n) matrix-valued function on [to, e0], each 
component of the (n x r) matrix-valued function B(.) defined in [to, e0] being obtained by joining together 
a finite number of restrictions (to intervals of the form [~x, [3[, where to ~< cx < 1~ ~< 8o) of continuous 
functions in [to, e0]. The structure of the matrix-valued function S(.) is assumed to be the same as in 
the case of B(.), the "dimensions" of S(.) being m x r. Y is a closed set in the m-dimensional space R m. 
We shall assume that all components of the control program f = (1'1 . . . . .  f,) are piecewise-constant, 
right-continuous, and non-negative. 

Let F be the set of all such control programsf = (]1,--- ,f~) (with piecewise-constant, right-continuous, 
and non-negative ce,mponents). If f •  F, then we denote byx/(-) = (xfi), to ~< t ~< e0) the trajectory of 
(1.1) generated b y f  and starting from an initial position (to, x0). Let n be the projection from R n onto 
R k which makes any n-dimensional vector correspond to the vector formed by the first k coordinates. 
Then, along with the points n(x/(e0)) forming directly the attainability domain under the condition (1.2), 
it makes sense to consider their limits, i.e. the limits of the sequences 

p ~ 7t(x b (00)): N ~ R e (1.3) 

corresponding to approximate solutions (]p)7 in F that satisfy each weakened version of condition (1.2) 
(with an e-neighbourhood on the right-hand side of (1.2), e > 0) starting from some instant of  time. If 
z. • R k satisfies the above asymptotic attainability condition, the question arises of the properties of 
the approximate solutions (fp)*~ that realize z. as the limit of (1.3). Below we discuss the conditions of 
a ("bounded") realization of z., under which each version of the solution sequence (]p)*~ satisfying 
condition (1.3) of convergence to z. (which also satisfies (1.2) to within e for almost all p • N when e 
> 0) has a bounded energy input sequence. 
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In this connection we consider a simple example of the problem of the control of a point mass on a straight line. 
In this case (1.1) has the form (n = 2, k = 1) 

-i:l(t)=x 2 , Jc2(t)=f(t) (1.4) 

with zero initial conditions x01 = xaz = 0; t o a_ 0, 00 A 1. 
As (1.2), we shall use the condition xf, 1(1) = 1/2 (its reduction to (1.2) is obvious and will be omitted). There is 

a (scalar) control function f e F for which the above condition is satisfied accurately (for example, the control 
function that is identically equal to one). It follows that the point z, = 1/2 admits of an asymptotic realization in 
the class of integrally bounded approximate solutions (in this case the solution sequence (fp)*~ can be chosen to be 
stationary). On the other hand, there is also an "unbounded" asymptotic realization of the same point z.. 

For if 8 e ]0, 1[, we define ](s) e F to be the function that is non-zero only over the interval [1 - 8, 1[ and 
which takes the constant value 5 -2 in this interval. If the sequence of approximate solutions (f~)7 is now taken to 
be 

= f(~)l (q ~ N) fq J 18=(2q)-t 

then, in particular, we shall obtain an unbounded asymptotic realization of z.. Of course, in the specific case in 
question we are dealing with infinitely many versions of an accurate realization of z,, which implies, in particular, 
that the realization is asymptotic. Nevertheless, even this rather schematic example demonstrates that, for any point 
chosen by the investigator, different ways for its asymptotic realization on the terminal states of (1.1) may exist 
simultaneously in principle. In many cases the asymptotic realization of z. is always "bounded", so that the property 
of asymptotic attainability of the given point is of better quality in some sense. 

For if we consider the construction of the asymptotic attainability set [4] in the whole phase space under the 
same conditionxf, l(1) = 1/2, then, for any planar vector z. chosen in this set, every asymptotic realization of z. will 
turn out to be "bounded" (on account of the velocity coordinate). The condition Xf, l(1) = 1/2 itself can be replaced 
by a more general one (see (1.2)), but the assertion on the nature of the asymptotic realization will remain 
unchanged. Regrading the aforesaid "direct" condition, we observe that here all possible points (1/2 ; ~), where 
a) t> 1/2, are asymptotically attainable. 

We will consider one more similar example for the following elementary controlled system (n = 1, r = 1) 

k(t)=f(t), 0~<t~<l 

The restrictions on the choice of the control have the form 

Suppose that the functional 

I 

J tfCt)dt <~ 0, f e F (1.5) 
0 

f~-~g(! f(t)dt]: F---~R 

R---~R, g(x)=~ 21x-1121' -**<~x<~l g: 
t l/x, 1 ~<x~<+,,* 

is given. We consider the point z* = 0. 
On the one hand, this point can be realized as the limit of the sequence 

g ] ; , ( t ) d t  , ] n ( t )  = l _ .  2 l l n < ~ x < l  , 
/ / 1  

Vn ~N 

It is obvious that (1.5) is satisfied for the controlfn (for almost all n e N) apart from e > 0 and 
l 1 

v,, e N: I f,,(Odt =-i  
o 

It follows that (fn)7 is an integrally bounded approximate solution, which realizes z. = 0 in the limit (in fact, 
accurately) on the values ofg. 

On the other hand, consider the sequence 

**. In 3, O~t<lln 2 
(hn)! • hn(t)=[O ' lln2<~t<l 
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Obviously, (h~)*~ is an approximate solution realizing the same point z, --- 0 on the values of g, but it is not integrally 
bounded. Here it is taken into account that 

i IIn 2 

th n ( t )d t  = ~ n3tdt = ~ ---} 0 
0 0 2n 

The simple examples considered above indicate that an asymptotically attainable element z. may admit 
of both a bounded and an unbounded realization. It is of interest to establish conditions which exclude 
the "unbounded" version of the asymptotic realization of z.. The present paper is devoted to a study 
of such conditions. Note that the properties that are the basics of the phenomenon under investigation 
are present not only in control problems. Another important example of this kind can be obtained by 
considering restrictions on the form on inequalities, which are typical of mathematical programming 
problems. There are also other realizations of the general construction considered below, in which no 
specific features of c~3ntrol problems are used. A "systems operator" with values in a topological space 
is considered in these general constructions. 

An extension of this kind becomes necessary even in problems concerned with the control of system 
(1.1), (1.2) if the asymptotic behaviour of trajectories is considered, rather than just their terminal values. 
In this ease a vector.-valued function, which may, in general, be discontinuous, plays the role of z.. It 
proves useful to employ the pointwise-convergence topology to describe the passage to the limit. In 
this connection, we shall henceforth consider a special topological construction, which enables us to 
study from a general standpoint the issue of the asymptotic realization, invoking the notion of 
Moore-Smith convergence if necessary. 

2. G E N E R A L  D E F I N I T I O N S  AND NOTATION 

We shall use topology and finitely additive measure theory, which are required to study the applied 
problems in question. Henceforth we shall use quantifiers and predicates. We shall use the following 
convention. The expression VxS[X# 0] (qxS[X# 0]) will be employed as a brief notation of the following 
statement: for every set (there exists a set) X such that X # O. We denote the real axis by R; N = (1, 
2 , . . .  }. We put Vm ~ N: 1, m --& ( i y  N I i ~< m}. I fA andB are sets~ then we denote b y ~  the set of 
all funct ionsf  f romA to B. I f f ~  B ~ and C is a subset of A, we p u t f  (C) = {f(x): x e C}. If (X, x) is a 
topological space (TS) and A a subset of X, then we denote by cl(A, x) the closure of A in (X, x). If 
(X, x) is a TS andx  ~ X, then Nx(x) will denote the family of all neighbourhoods [5] of the point x. 

Below we use generalized sequences or directions [5] in a TS to represent a passage to the limit (a 
sequence being a special case of a direction). If T is a set, then we denote by DIR[T] the set of all 
directions [5] on T. Fbr L ~ DIR[T] we call the pair (T, L)  a directed set (DS), as usual. Furthermore, 
i f H  is a set and h ~ H r, then the triple (T, L,  h) is called a direction in H. If (T, L )  is a DS, then we 
denote by (L  - conf)[T] the family of all sets P C T such that V x ~ T ~ ~ P: x L y. If (X, x) is a TS 
and (T, L,  h) is a direction in X, we put 

(x - cl)[T;L;h] A {x ~ XIVQ ~ Nx(x): h -I (Q) e (L - conf)[T]} 

(the set of all limiting points of (T, L,  h)). If (X, x) is a TS and (T, L,  h) is a direction in X, we 
shall write ( T ; L ;  h] 2+ x if (T, L,  h) converges to x in (X, x). If m ~ N and H is a non-empty set, 
we get H m A_ H 1, m. If (T, x) with T ~ 0 is a TS and m ~ N, then we denote by ~ [ x ]  the natural topology 
in I'm = T x . . .  x T (m times) corresponding to the product of m copies of (T, x). Linear operations, 
multiplication, and order will be defined in a pointwise manner. 

We fix a non-empty set E and a semi-algebra [4, 6] L of subsets of E. We denote by (add)+[L] the 
cone of all non-negative real-valued finitely additive measures on L and by A[L] the linear subspace 
R L generated by the cone. Next, we fix "q e (add)+[L]. We follow the definitions and notation of [7-9] 
in respect of the elements of finitely additive measure and integration theory. We denote by Bo(E, L) 
the set of all step functionals on E in the sense of (E, L) (only functions with a finite set of values will 
be considered as step functions). A simple example of this space, related to the natural pointer 
semialgebra of the interval [to, 00[, is provided by the set of all piecewise-constant right-continuous 
functions on [to, 00[. 

Turning to the general case, we introduce the positive cone B~(E, L) in Bo(E , L), the elements of 
which play a role similar to that of the components o f f  ~ F in Section 1. We will denote by B(E, L) 
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the closure of B0(E, L) in the space B(E) of all bounded functionals on E equipped with the supremum 
norm I1" II (B(E, L) consists of uniform limits of convergent sequences in Bo(E, L) and only such limits). 
If L is a o-algebra of subsets of E, then (B(E, L) is the set of all L-measurable functionals in B(E). Then 
B(E, L), being a closed subspace in B(E), I1" II, is a Banaeh space with positive cone B+(E, L). We denote 
by B*(E, L) the dual topological space to B(E, L). It is fully characterized by the measures of A(L) in 
the sense that even the simplest construction of the integral with respect to a finitely additive measure 
[8] defines an isometric isomorphism A(L) on B*(E, L), associating a functional from B(E, L) with each 
measure Ix e A(L), the values of the functional being the Ix-integrals of functionals from B(E, L). 

The duality (B(E, L), A(L) defines the *-weak topology x.(L) in A(L) as the weakest topology in A(L) 
in which the integral of every function from B(E, L) is continuous with respect to the finitely additive 
measure (of bounded variation) appearing in the integral. We know that (A(L), z.(L)) is a locally convex 
space, in which the compactness conditions are given by Alaoghu's theorem [10]. 

I f f ~  B(E, L), then we denote b y f  • rl the indefinite "q-integral o f f  [8]. We set (add)+[L; ~!] _g {Ix 
(add)+[L] I VL ~ L: (rI(L) = 0) ~ (Ix(L) = 0)}. We denote by X~(L) the (relative) topology (add)+[L; 
x] induced from ((A(L), x.(L)); (add)+r[L; ~] a__ (add)+[L; rl]r; 

(add)~ + [L; ~] A (add)+ [L; HI'; (add),.+[L; rl], ®'[x;(L)]) (2.1) 

is the locally compact space of generalized control functions admitting of an everywhere dense 
embedding B~, ~[E, L] A B~ (E; L) r by the operator I defined as 

(f/)i~l'~ ~ (f/*l~)iel~: Bo, r[E;L] --> (add)+[L;~] 

Namely [7], (add)+,[L; rl] = cI(II(B~¢[E; L), ~[x*n(L)] ). Let VQS[Q ;~ 0] V L ~ (DIR)[Q] 

Br(Q,L,E,L, TI) A{g ~ B~,r[E;L]QI3d ~ Q 3c ~]O, oo[ 

Vq~Q: ( d L q ) ~  S g(q)(i)dq <~c (2.2) 
E 

3. C O N D I T I O N S  FOR A B O U N D E D  R E A L I Z A T I O N  OF 
ASYMPTOTICALLY ATTAINABLE ELEMENTS 

Let F be a non-empty family of subsets of B~, tiE; L] such that V A e F V B e F 3C ~ F: C C A fq 
B. It will play the role of asymptotic constraints. Furthermore, let (0, O) with 0 ;~ 0 be a given TS. We 
fix an operator 

+ 
w: (add)r[L; rl] ---> 0 (3.1) 

continuous in the sense of the TS (2.1) and (0, a~). Moreover, we set W a-- w° I, so that Wis the operator 

(f/)i~l'~ F"> w((f/*l~)i~l-~): B0+r[E;L] ----> O (3.2) 

There are many specific classes of problems admitting of the representation (3.1), (3.2). In particular, 
this is the case for the problem concerned with the  study of the asymptotic behaviour of attainability 
domains considered in Section 1 [4, Chap. VI; 7, 9]. The construction of the operator (3.1) for this case 
involves an extension of Cauchy's formula [11, 12]. 

In turn, this and some other applications are related to a representation which can be essentially 
characterized by the following class of operators W 

(3.3) 

where g is a continuous vector-valued function in an approximate finite-dimensional space. In the case 
(3.3) the operator Wean be constructed using the notion of an indefinite integral. 
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Let VS[T¢0] V<e(DIR)[T] Vtoe0: 
T 

AS[T, <,to] A={h e B~.r[ E;L]r I(VU e F 3m e T 
O 

Vt e T: (re<t) =~ (h(t) e U))&((T,<,W o h)---)to)} 

AC __A {to e 01=IS[T.~ 0] 3< e DIR[T]: AS[T, <,to] ~ 0} 
T 

BAC =A {to e ACIVS[T ~ O] V <  e DIR[T]: 
T 

AS[T,<,to] c Br(T,<,E,L,~)} 

Theorem 1. Let to e AC. Then the following assertions are equivalent 
1. co e BAC; 
2. (VS[T ~ 0] V< e DIR[T] Vh e AS[T, <,co]: 

T 

(~r [,~ (L)] - cl)[T; <; I o h] ~ 0). 

(3.4) 

(3.5) 

Proof. The implication 1 =~ 2 is a simple consequence of the compactness of 

~.r[C] m - +  A{(~i)ie~, r e(add)+[L;rl]l i=l ~ ~ti(E)<~c} (c>~O) 

in the topological space (2.1) [4, Chaps IV, VI]. 
Suppose that co satisfies condition (2). We shall select an approximate solution realizing to in the limit. 
Thus, let (A, <,  ~0) be a direction in B~, ~[E; L] such that 9 e AS[A, <,  q~]. Then ~p e Br(A, <, E, L, 

11). This assertion can be proved by assuming the contrary and using the well-known construction of 
the directed product [5]. Another important feature is related to the following characteristic property 
of the limiting point of a direction in a topological space: the preimage of a neighbourhood by the 
operator defining the direction is a continal set [5]. We recall that (A, <,  9), with 9 e AS[A, <, 9] has 
been chosen arbitrarily so that to e BAC by (3.5), i.e. the implication 1 =~ 2 has been established. 

4. A SPECIAL CASE 

Everywhere below we shall consider the case of a metrizable [5] space (0, O). Let p be a metric 
generating the topology O. 

Condition 1. 

3to ° e O Va e ]0, -0[ 3b e [0, **[ 

Vl~e(add)r+[L;rl]: (b<i=, ~ lx(i)(E))~(a'P(to°'w(Ix))) 

Theorem 2. Let Condition 1 be satisfied. Then AC = BAC. 
Proof. Let to e AC. Then one can find a direction (T, L, h) in B~- r[E; L] such that h e AS[T, L, ca]. 

:~ + We choose any dir~.ction (T, L, h) in B0 r[E; L] having the aforesaid properties. Then, in particular, 
0 p(W(h(t)), co) < I starting from some inst'~t of time. If co corresponds to Condition 1, then p(W(h(t)), 

tou) < p(to0, to) + I starting from some instant of time. By Condition 1, it can be shown that b e [0, 0~[, 
so that Vg e (add)+[L; rl] 

b < ~ ll(i)(E)) ~ (p(too,to) + ! ~< p(to°,w(la)) / 
i=l 

(4.1) 
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Along with this, V t e T: (IV* h)(t)  = w((I  ° h)(t)) .  Then  p(to °, w((I* h)(t)))  < p(to0, to) + 1 starting 
f rom some instant o f  time, so that  (see (4.1)) 

~h(t)(i)dT I = ~ ( l o h ) ( t ) ( i ) ( E ) ~  b 
i=l i=l 

starting f rom some instant o f  time. In o ther  words, h ~ Br(T , / - ,  E, L, rl). Since the approximate solution 
(T , /_ ,  h)  (which realizes to) has been  chosen arbitrarily, we find that  to e BAC. The  inclusion AC C 
BAC has been  proved, which, by (3.5), concludes the whole proof.  

Example. Let the following conditions be satisfied: (1) p e N and (0, O) - R ~ with the ordinary topology of 
coordinate-wise convergence; (2)____~ ° e liP; (3) (i,j) ~ Mij: 1,p x 1, r ---> B+(E; L) is a matrix-valued function such 
that 3a  e ]0, *~[Vj e 1, r qi e 1,p Vx e E: a ~< Mq(x); (4) Wean be represented as 

w(f)A= to o +(~.~= ~ Mi j f ( j )drl]  , f eB~.r[E;L ] (4.2) 
1 E ' lie~,p 

For Wgiven by (4.2) one can realize (3.2) in terms of the following continuous operator w 

W(lJ.)_- A tO o + ~ Mi.jdl2j , g e(add)r+[L;lq] 
I E i ~ l ~  

If p is now defined to be the supremum metric (i.e. the metric generated by the supremum norm is RP), then 
Condition 1 is satisfied. For example, the study of the asymptotic behaviour of attainability domains in the whole 
phase space for a vector point mass controlled by a force with non-negative components can be reduced to this 
form. (The choice of the control force as a programme is also subject to restrictions of the form (1.2); a family F 
(Section 3) of general form can of course also be used to impose "asymptotic" restrictions.) 

The following system serves as another example satisfying Conditions 1-4 

Yc(t)=A(t)x+f(t),  t0~<t~<0 , x(to)=Xo, x ~ R  r 

where A is a diagonal (r x 0-matrix with elements ~1 E l ~  . . . .  ~'r • R, and f is an r-dimensional vector-valued 
control function. 

In this case the role of the matrix-valued function M is played by the fundamental matrix of solutions of the 
corresponding homogeneous system. Let ~ a__ e-i x/i(0-t0) ' i ~ 1 7 ,  and ot a__ infi E l-~r{~}. Then, obviously, Vie 
Vt ~ [to, 0]: exp[~/(0 - t)] 1> o~. 

Returning to the general case of a metrizable TS (0, 0), we observe that if F has a fundamental sequence of 
sets [10], then in (3.4) and (3.5) it is possible to restrict oneself, without loss of generality, to the class of sequential 
approximate solutions (solution sequences). 
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